Search results for "Functional proteins"

showing 2 items of 2 documents

Engineered Functional Redundancy Relaxes Selective Constraints upon Endogenous Genes in Viral RNA Genomes

2018

Functional redundancy, understood as the functional overlap of different genes, is a double-edge sword. At the one side, it is thought to serve as a robustness mechanism that buffers the deleterious effect of mutations hitting one of the redundant copies, thus resulting in pseudogenization. At the other side, it is considered as a source of genetic and functional innovation. In any case, genetically redundant genes are expected to show an acceleration in the rate of molecular evolution. Here, we tackle the role of functional redundancy in viral RNA genomes. To this end, we have evaluated the rates of compensatory evolution for deleterious mutations affecting an essential function, the suppr…

0301 basic medicinePotyvirusEndogenyComputational biologyGenome ViralGenomeExperimental virus evolutionViral suppressors of RNA silencingEvolution Molecular03 medical and health sciencesGeneticsRNA VirusesViral rnaGeneEcology Evolution Behavior and SystematicsCompensatory evolutionPlant DiseasesbiologyTobacco etch virusFunctional redundancyMultifunctional proteinsPlantsbiology.organism_classificationGenetic redundancyTobacco etch virus030104 developmental biologyMutationGenetic redundancyRNA ViralRNA InterferencePseudogenesResearch Article
researchProduct

Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature

2013

Abstract Background Producing recombinant plant proteins expressed in Escherichia coli produce in high yields and in a soluble and functional form can be difficult. Under overexpression conditions, proteins frequently accumulate as insoluble aggregates (inclusion bodies) within the producing bacteria. We evaluated how the initial culture density, temperature and duration of the expression stage affect the production of some eukaryotic enzymes in E. coli. Findings A high yield of active soluble proteins was obtained by combining early-log phase cultures and low temperatures for protein induction. When IPTG was added at OD600 = 0.1 and cultures were maintained at 4°C for 48-72 h, the soluble …

chemistry.chemical_classificationMultidisciplinarybusiness.industryShort Reportlac operonBiologymedicine.disease_causeFunctional proteinsInclusion bodiesBiotechnologylaw.inventionEnzymeBiochemistrychemistrylawProtein purificationmedicineRecombinant DNALow temperatureSoluble recombinant proteinsTarget proteinHeterologous expressionbusinessEscherichia coliEarly log phaseSpringerPlus
researchProduct